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Abstract

Batch liquid chromatographic columns are often equilibrated with an eluent stream being a mixture of inert compounds and so-called
modifiers. The sample injected into the eluent stream usually consists of the solutes to be separated and of a mixture of the same solvents as in
the eluent but in general with different concentration values. This results in two groups of peaks moving along the column: the solute peaks and
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he modifier pertubations. If the adsorptivity of the solute depends strongly on the modifier, as it is often the case in biochromatog
nterference between the two groups of peaks leads to peculiar phenomena like double peaks, split peaks, distorted peaks with anti
hape, etc. In this work, these phenomena are analyzed based on an analytical solution of the equilibrium theory model and th
ompared with detailed simulations and experimental data. It is shown that the qualitative behavior is well predicted in the frame of e
heory and general guidelines how to avoid these kinds of interactions are developed.
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. Introduction

Batch liquid chromatographic columns are typically equi-
ibrated with an eluent stream which contains a mixture of
wo, or more, components which can adsorb more or less
n the stationary phase and are used to tune the adsorption
ehavior of the solutes to be separated. The sample injected

nto the eluent stream consists of the solutes to be separated,
nd of a mixture of the same solvents as in the eluent but in
eneral with different concentration values. The interaction
etween the solutes, the stationary phase and the eluent com-
onents can lead to complex and intriguing phenomena that
ave always attracted the attention of chromatographers.

A typical example is offered by the so-called system peaks
nd the related phenomena like extra peaks and peak defor-
ation which have been investigated thoroughly by Guio-

∗ Corresponding author. Tel.: +41 16323034; fax: +41 16321082.
E-mail address:morbidelli@tech.chem.ethz.ch (M. Morbidelli).

chon and co-workers[1–3]. System peaks occur when
eluent is made up of at least two different compounds
at least one adsorbing species and when the injected
affects the solid phase concentration of the adsorbing e
species. In this case, due to the adsorption of the solut
solid phase equilibrium concentration of the adsorbing
ent species is perturbed. Consequently, two different k
of peaks migrate along the column: one due to the inje
solute and one due to the eluent species displaced in the
phase. The latter ones are called system peaks. It sho
noted that system peaks can also occur when the conc
tion of the adsorbing species in the eluent stream is the
as in the sample injection.

Due to the sample–solvent interaction, a different cla
phenomena occurs when the concentrations of the adso
eluents (i.e. the so-called modifiers) in the injected sa
are different from the ones in the eluent stream. The m
tion of this positive or negative perturbation of the mod
concentration can strongly affect the retention time of

021-9673/$ – see front matter © 2005 Elsevier B.V. All rights reserved.
oi:10.1016/j.chroma.2005.07.035
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solute. This is seen particularly in biochromatography where
the adsorption of the solute, e.g. a peptide or a protein, is
strongly dependent on the modifier concentration, such as an
organic solvent or an inorganic salt. System peaks might also
occur in this case if the adsorption of the solute affects the
modifier concentration in the solid phase, thus adding another
dimension of complexity to the phenomenon.

In this work we consider the phenomena induced by the
sample–solvent in the case where the solute is injected highly
diluted while the modifier concentration in the mobile phase
is sufficiently large to enter the non-linear region of its adsorp-
tion isotherm. These are typical conditions encountered, for
example, when one wants to estimate the Henry constant
of the solute as a function of the eluent phase composition
by measuring the retention time of a highly diluted peak of
the solute. The question is whether sample–solvent phenom-
ena can affect such retention times, thus masking the correct
Henry constant values. It is clear that under these conditions
system peaks do not occur, since the solute is too dilute to
alter the concentration of the species in the mobile phase.

These processes have been studied in the context of bio
[4] and fine chemical[5–7]chromatography, either adopting a
qualitative interpretation of the phenomena observed experi-
mentally or running simulation using detailed models. In this
work, it is shown that these phenomena can be described,
understood and predicted using a simple analytical model
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ε∗ ∂ci

∂t
+ (1 − ε∗)

∂qi

∂t
+ u

∂ci

∂z
= 0 (1)

beingε* the total column porosity,ci andqi the liquid and
solid phase concentration, respectively,t the time,zthe space
coordinate andu the superficial velocity.

Eq.(1), together with the equilibrium isothermqi = f(ci) is
a set of reducible, first-order PDEs whose solution has been
discussed in detail by Rhee et al. for the single-component[9]
as well as for the multi-component case[10]. In the following,
we consider the solution of this model for one modifier and
one solute in the cases where the modifier exhibits a linear
or a Langmuir isotherm, whereas the solute, being highly
diluted, exhibits a linear isotherm in both cases. In addition,
following the typical experimental behavior, we assume that
the adsorption isotherm of the modifier is not affected by
the solute, while the Henry constant of the latter is a strong
function of the modifier concentration.

2.1. Linear isotherm for the modifier

Let us consider the mass balance of Eq.(1) for both
the modifier and the solute in the case of a linear modifier
isotherm, i.e.

q
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hich is based on existing solutions of the equilibrium the
odel. This model provides general and quantitative pre

ions of the conditions where double peaks, distorted p
nd severe alteration of the observed retention time occu

o the strong interactions between the modifier perturba
nd the solute peak. It has to be kept in mind that quan

ive predictions would require a detailed knowledge of
sotherms.

Finally, a simple representation of the operating c
ition space is proposed, where general guidelines
ample–solvent induced phenomena can be avoide
iven.

It has to be noted that having a sample solvent with
ame composition as the eluent allows avoiding a local
urbation of the modifier concentration and the conseq
henomena mentioned above. However, it is often diffi

or practical reasons to adjust the sample solvent to the
nt composition.

. Equilibrium theory model

The equilibrium theory of chromatography assumes
he liquid and the solid phase are at every time and p
ion in the column at equilibrium and that axial dispersio
egligible, i.e. infinite column efficiency.

These assumptions are fairly well fulfilled in ma
hromatographic applications. When considering
imensional flow (no radial gradient) and a constant fl
ow velocity, the mass balance over an infinitely small
M = HMcM (2)

hereas the adsorption of the solute depends on the mo
oncentration according to:

S = HS(cM)cS (3)

Substituting these two isotherms into Eq.(1) yields the
air of PDEs

∂cM

∂x
+ (1 + ν∗HM)

∂cM

∂τ
= 0 (4)

∂cS

∂x
+ (1 + ν∗HS(cM))

∂cS

∂τ
+ ν∗cS

dHS(cM)

dcM

∂cM

∂τ
= 0 (5)

herex= z/L, τ = ut/(Lε* ) and the phase ratio is defined
∗ = (1− ε* )/ε* . The boundary and initial conditions for
njected pulse of the solute and the modifier into an el
tream containing only the modifier at a different concen
ion are given by:

0 ≤ τ ≤ τInj : cM(x = 0, τ) = c
Inj
M ; cS(x = 0, τ) = c

Inj
S

τ > τInj : cM(x = 0, τ) = c0
M; cS(x = 0, τ) = 0

(6)

cM(x, τ = 0) = c0
M

cS(x, τ = 0) = 0
(7)

Exploiting the feature that Eq.(5) depends on the solutio
f Eq. (4) but not vice versa, the solution of Eq.(4) can be
asily represented in the physical plane using the meth
haracteristics[9,10]. The characteristics are lines, strai
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Fig. 1. Modifier characteristics in the case of linear modifier adsorption
isotherm.

in this case, that propagate a concentration value from where
it is assigned, as either boundary (x= 0) or initial (τ = 0) con-
dition, into the physical plane (x, τ). For a linear isotherm,
the migration velocity of a component is independent of its
concentration and therefore the characteristics of the modifier
are the straight, parallel lines shown inFig. 1, whose slope is
σM:

σM = 1 + ν∗HM (8)

The inlet perturbation of the eluent concentration fromc0
M

to c
Inj
M travels as a rectangle through the column, so that the

modifier concentration as a function of time and position in
the column is given by:

cM(x, τ) =




c0
M σMx > τ

c
Inj
M σMx + τInj > τ > σMx

c0
M τ > σMx + τInj

(9)

The solution of the solute mass balance (Eq.(5)) can
be obtained by considering that the term∂cM/∂τ = 0 in the
entire integration plane with the exception of the straight
lines τ =σMx and τ =σMx+ τInj where it is not defined. If
we integrate Eq.(5) separately in the three different regions
shown inFig. 1, we find that also the solute concentration
propagates along straight characteristics whose slopes in the
t

σ
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s
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Fig. 2. Case (a), dashed lines: modifier characteristics enclosing injected
peak; solid lines: solute characteristics; dotted line: isocratic solute charac-
teristic.

the following typical experimental conditions, namely that
HS(cM) is a strongly monotonically decreasing function and
that a vacancy modifier peak withcInj

M < c0
M is injected. This

implies that the solute travels faster outside the modifier peak
than inside it, sinceHS(cInj

M ) > HS(c0
M). In this case, the fol-

lowing three situations can occur, depending upon the relative
value of the modifier Henry constant,HM:

(a) HM > HS(cInj
M ) > HS(c0

M)

(b) HS(cInj
M ) > HS(c0

M) > HM

(c) HS(cInj
M ) > HM > HS(c0

M)

In case (a), the vacancy peak of the modifier travels slower
than the solute both inside and outside the modifier peak.
Therefore, the solute peak travels to the front of the modifier
peak, leaves it and enters the domain with a higher modifier
concentration (cInj

M < c0
M), where it further accelerates. The

characteristic lines corresponding to this case are shown in
Fig. 2. It is seen that, when compared with the isocratic peak,
the solute peak is retarded and broadened by the interaction
with the modifier peak. By isocratic peak we mean the solute
peak that one would obtain if the modifier concentration was
c0

M in the entire column. This is the situation illustrated by the
dotted characteristic line inFig. 2, while the real and isocratic
peaks are shown inFig. 3.

its
c ange
i ak.
T in the

F line:
i

hree differentcM-domains are given by:

S(x, τ) =




1 + ν∗HS(c0
M) σMx > τ

1 + ν∗HS(cInj
M ) σMx + τInj > τ > σMx

1 + ν∗HS(c0
M) τ > σMx + τInj

(10)

With these expressions, the propagation of the inje
olute pulse can easily be calculated.

In the following, three cases are discussed in order to
ide an introductory example for understanding the e
f sample–solvent phenomena. In particular, we con
It is worth noting that the solute concentration along
haracteristic is not constant in this case due to the ch
n the migration velocity when leaving the modifier pe
he solute concentration in fact decreases and its value

ig. 3. Case (a), solid lines: modifier and solute chromatogram; dotted
socratic solute chromatogram.
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Fig. 4. Case (b), dashed lines: modifier characteristics enclosing injected
peak; solid lines: solute characteristics; dotted line: isocratic solute charac-
teristic.

solute peak at the column outlet is given by:

cOut
S = HM − HS(cInj

M )

HM − HS(c0
M)

c
Inj
S (11)

which indicates that the peak broadening is larger the larger
the difference betweenc0

M and c
Inj
M is, whereas the break-

through times of the front and the rear part of the peak are
given by

τ1
S = 1 + ν∗HS(c0

M) (12)

τ2
S = 1 + ν∗HS(c0

M) + τinj
HM − HS(c0

M)

HM − HS(cInj
M )

(13)

In case (b), the modifier vacancy peak travels faster than
the solute both inside and outside the modifier peak. There-
fore the solute crosses the rear boundary of the modifier peak
and enters the region of higher modifier concentration, where
it accelerates. As shown inFig. 4, this leads to the sharpening
of the eluted peak, which is also retarded with respect to the
isocratic peak, as shown inFig. 5.

The solute concentration in the outlet peak is again given
by Eq.(11), but it is now larger than in the injected peak since
the multiplier ofcInj

S in Eq.(11) is bigger than 1.
For case (c), the migration velocity of the modifier peak

is larger than that of the solute inside the modifier peak but
s rsect

F line:
i

Fig. 6. Case (c), dashed lines: modifier characteristics enclosing injected
peak; solid lines: solute characteristics; dotted line: isocratic solute charac-
teristic.

the rear boundary of the modifier peak. If the solute enters
the domain behind the vacancy modifier peak, i.e. wherec0

M
prevails, it will travel faster than the modifier peak itself,
hence it will re-enter the modifier peak from behind where it
will be slowed down again. As a consequence, the solute is
confined at the end of the modifier peak, propagates with the
rear end of the modifier peak and is finally eluted as a very
sharp peak as shown inFigs. 6 and 7. It is worth noting that
in this case the solute peak is narrow, but its retention time
is determined by the Henry constant of the modifier and the
injection time, and not by the Henry constant of the solute.
This would obviously create a problem when estimating the
solute Henry constants from its retention times.

The peculiar chromatographic behavior as discussed
above for the three cases has also been analyzed in the
hodograph plane, yielding the same results and, due to the
mathematically more stringent argumentation, further insight
into the phenomena[11].

In the context of the above discussion it is worth mention-
ing that the system behavior would become more complex if
we account for some simple dispersive effect. Assuming an
injection with a slightly dispersed solute and modifier peak
front, the solute molecules at the peak front find themselves
in an environment with a higher modifier concentration than
in the injection pulse due to the dispersion effect. If this
modifier concentration is large enough, the solute molecules
t tion
t he
s ancy

F line:
i

maller outside. Hence, the solute characteristics inte

ig. 5. Case (b), solid lines: modifier and solute chromatogram; dotted
socratic solute chromatogram.
ravel faster than the modifier peak and elute with a reten
ime determined byHS(c0

M), whereas the main fraction of t
olute molecules travels to the rear of the modifier vac

ig. 7. Case (c), solid lines: modifier and solute chromatogram; dotted
socratic solute chromatogram.
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peak and elutes with a retention time determined byHM as
discussed with reference toFig. 6. In this case, two distinct
solute peaks would occur in the chromatogram originated by
the injection of a single solute, as discussed later in detail.

2.2. Langmuir adsorption isotherm for the modifier

Let us now consider the case where the modifier exhibits
a Langmuir adsorption isotherm:

qM(cM) = HMcM

1 + KMcM
(14)

The mass balance equation for the solute (Eq.(5)) and its
isotherm (Eq.(3)) remain unchanged.

Due to the non-linearity of the modifier isotherm, the char-
acteristic lines for the modifier are not parallel lines as in the
linear case. Their local slope is actually a function of the
concentrationcM, according to the relationship:

σM(cM) = 1 + ν∗ HM

(1 + KMcM)2
(15)

The propagation behavior of the modifier along the col-
umn is well known[9], and in the case of a vacancy peak
the modifier step propagates through a dispersive wave in the
front and a shock in the rear. If the injected volume is small
i ches
u and
t

ion
c

line
F on-
s ted
b tion
j on
c ally
d of it
i ts a
p

F muir
i

The front part of the peak consists of a dispersive wave which
broadens along the column. Each line in the dispersive wave
region 0–A–C–B is the characteristic corresponding to a spe-
cific modifier concentration according to Eq.(15).

The slope of the line 0–A is given by Eq.(15)as:

σ0−A
M (cInj

M ) = 1 + ν∗ HM

(1 + KMc
Inj
M )

2 (16)

while the slope of the shock along line F–A is given by

σF−A
M (c0

M, c
Inj
M ) = 1 + ν∗ HM

(1 + KMc0
M)(1 + KMc

Inj
M )

(17)

henceσF−A
M < σ0−A

M .
The line A–C is not a straight line and its behavior is

described by

τA−C = x +
( √

ν∗HM

1 + c0
MKM

(
√

x − √
xA) + √

τA − xA

)2

(18)

where the coordinatesxA andτA of point A are given by

xA = (1 + c0
MKM)(1 + c

Inj
M KM)

2
τInj

(c0
M − c

Inj
M )HMKMν∗ (19)

τ

peak
d istics
a is
s

σ

far
a :

( , i.e.
ont

(
, i.e.

( –A,
c-

t line

, and
t
d Subse-
q ravels
w h
t local
s

n comparison to the column volume, the rear shock cat
p the front wave before the column outlet, and the wave

he shock interact as illustrated inFig. 8.
The characteristic lines for the modifier for an inject

Inj
M < c0

M are shown inFig. 8.
Similarly to the linear case, in the regions above

–A–C and below line 0–B the modifier concentration is c
tant and equal toc0

M. The rear end of the peak, represen
y the line F–A–C, travels as a shock with a concentra

ump fromc
Inj
M to c0

M along line F–A, while the concentrati
hange through the discontinuity line A–C monotonic
ecreases as the concentration on the right hand side

ncreases from A to C. The triangle 0–A–F represen
lateau, where the modifier concentration is equal toc

Inj
M .

ig. 8. Modifier characteristics for negative perturbation, Lang
sotherm.
A = σ0−A
M xA (20)

The interaction between the modifier and the solute
epends strongly on the slope of the solute character
t c

Inj
M , which prevails in the triangle 0–A–F. This slope

imply given by

S(cInj
M ) = 1 + ν∗HS(cInj

M ) (21)

Now, we can have the following three possibilities as
s the slope of the solute characteristics atc

Inj
M is concerned

a) it is lower than the slope of the shock characteristic
σS(cInj

M ) < σF−A
M , and the solute travels towards the fr

of the plateau and intersects line 0–A.
b) it is higher than the slope of line 0–A, i.e.σS(cInj

M ) >

σ0−A
M , and the solute travels to the rear of the plateau

line F–A.
c) it is intermediate between the slope of F–A and of 0

i.e. σ0−A
M > σS(cInj

M ) > σF−A
M , and some of the chara

teristics intersect line F–A, whereas others intersec
0–A.

In case (a), the solute characteristics cross line 0–A
hen intersect characteristics with highercM. Therefore,HS
ecreases, and so do the slopes of the characteristics.
uently, the solute leaves the dispersive wave, and then t
ith a velocity corresponding toHS(c0

M). The path throug
he wave region can be calculated by integrating the
lopes of the solute characteristics given by Eq.(22).
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Fig. 9. Case (a), dashed lines: modifier characteristics; solid lines: solute
characteristics.

dτ

dx

∣∣∣∣
S

= 1 + ν∗HS(cM) (22)

Using Eq.(15), the modifier concentration in the wave
region is known as a function ofτ andx:

cM = 1

KM

(√
HMν∗x
τ − x

− 1

)
(23)

Substituting Eq.(23) into Eq. (22), and using the func-
tional dependence ofHS on cM, one can integrate Eq.(22)
numerically, thus obtaining for instance the characteristics
illustrated in Fig. 9, It has to be noted for the following
figures, that dashed lines represent modifier characteristics,
thick solid lines the boundaries of the region where solute is
present and thin solid lines the solute characteristics.

It can be readily seen that the solute peak at the column
outlet is broader than the injected pulse. This case is very
similar to the linear case (a) in Section2.1.

Case (b) has to be divided into two sub-cases, whether
σS(c0

M) < σF−A
M (case b1) orσS(c0

M) > σF−A
M (case b2). In

the former case, the solute characteristics hit the line F–A
and the solute accumulates into a sharp peak at the rear end
of the modifier peak, with a behavior similar to that of the
linear case (c) in Section2.1. When the solute peak passes
point A and migrates on line A–C, the slope of the solute
c eases
d may
b ave
t e (a).
T
A

a eak
l

H

Fig. 10. Case (b1), dashed lines: modifier characteristics; solid lines: solute
characteristics.

Fig. 10illustrates such a situation in the physical plane. If
inequality Eq.(25) is on the contrary never fulfilled on line
A–C, the solute peak will elute together with the rear end of
the modifier peak leading to a chromatogram similar to that
of Fig. 7.

For case (b2), the solute characteristics are not confined to
the peak rear since the slope atc0

M is larger than that of line
F–A. Therefore, the solute peak and the modifier perturbation
split up and travel independent of each other, as in the linear
case (b) of Section2.1(seeFigs. 4 and 5).

In case (c), the slope of the solute characteristics is inter-
mediate between the slope of line 0–A and that of F–A.
Therefore, some solute characteristics intersect line 0–A and
proceed as in case (a), whereas others intersect line F–A and
proceed as in case (b). The fractionγ0–A of lines crossing line
0–A, which is proportional to the amount of solute traveling
through the dispersive wave front, can be calculated as:

γ0−A = τA − σS(cInj
M )xA

τInj
(26)

An example of the column dynamics corresponding to
case (c) is illustrated inFig. 11. It can be seen, that some of

F solute
c

haracteristics on the rear end of the modifier peak decr
ue to the decreasing height of the peak. Therefore, it
ecome lower than the local slope of line A–C and may le

he shock, thus entering the dispersive wave as in cas
he local slope for a point P with concentrationcP

M on line
–C is given by

dτ

dx

∣∣∣∣
A−C

M
= 1 + ν∗ HM

(1 + KMc0
M)(1 + KMcP

M)
(24)

nd with Eq.(22), the necessary condition for the solute p
eaving the shock at point P can be written as:

S(cP
M) ≤ HM

(1 + KMc0
M)(1 + KMcP

M)
(25)
 ig. 11. Case (c), dashed lines: modifier characteristics; solid lines:

haracteristics.
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Fig. 12. Case (c), double peak chromatogram.

the characteristics leave the plateau region 0–A–F through
line 0–A, while the solute hitting line F–A travels as a sharp
peak, crosses point A and leaves the shock at a point P, as
discussed. Between point A and P, no solute is present, and
so is in the region between lines A–X and P–Y. This leads to
a solute chromatogram (Fig. 12) exhibiting two peaks, a first
one resulting from the solute crossing line 0–A and being
eluted between Z and X with a low solute concentration as
discussed in Section2.1and a second sharp peak being eluted
at Y. The ratio of the peak areas of the first and the second
peak is given by Eq.(26).

This analysis can be extended to discuss and explain dis-
torted peaks. Let us consider the case where point A inFig. 11
does not exist, i.e. it is located beyondx= 1. This occurs
whenτInj is sufficiently large. As a consequence, the mod-

ifier plateau concentrationcInj
M is present until the column

outlet. In this case the solute chromatogram would consist of
three parts: a broad, low concentration peak from the solute
crossing the front of the injected modifier pulse; a peak at
the injected pulse concentration; a very sharp peak from the
solute eluting with the rear of the modifier peak. An example
of this kind of chromatogram is illustrated inFig. 13. One can
easily imagine that band-broadening in real columns leads in
this case to a chromatogram that looks similar to that obtained
for an anti-Langmuir isotherm.

exper
i d
t

the
p rear
e are
e nega-
t any
l

3. Dispersive model simulations

An equilibrium-dispersive model was used in order to ver-
ify the results obtained from equilibrium theory and to get
a more realistic picture (i.e. including dispersive effects) of
the behavior of these systems, with specific attention on the
phenomena of peak broadening, peak distortion and double
peaks.

The following mass balances of the modifier and the solute
constituting the classical equilibrium dispersive model were
discretized in space and integrated in time using the DIVPAG-
routine from the IMSL library.

∂cM

∂x
+
(

1 + ν∗ HM

(1 + KMcM)2

)
∂cM

∂τ
= εb

ε∗ Deff
∂2cM

∂x2

1

uL
(27)

∂cS

∂x
+ (1 + ν∗HS(cM))

∂cS

∂τ
+ ν∗cS

dHS(cM)

dcM

∂cM

∂τ

= εb

ε∗ Deff
∂2cS

∂x2

1

uL
(28)

The number of grid points was chosen large enough to
guarantee the convergence of the numerical method. The sim-
ulation parameters used are summarized inTable 1.

een
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r ence
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F as
w lvent
i

T
S

d
u
ε

ε

ν

G
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The observation has indeed been reported based on
mental data[12]; this situation will be further analyze
hrough simulations in the next section.

For the case of a positive modifier perturbation,
eak travels with a shock front and a dispersive wave
nd [9]. Since the treatment and the different cases
xactly analogous to those already discussed for a
ive modifier perturbation, these will not be pursued
onger.

Fig. 13. Case (c), distorted peak diagram.
-

In the following we consider a few examples that have b
elected among those where the equilibrium theory ana
eported in the previous chapter indicates a major differ
ith respect to the behavior of an isocratic pulse.
At first, we consider detailed simulations for case (a

efined in Section2.2, enforcing the following operation co
itions:cInj

M = 8.7 g/l, c0
M = 9.3 g/l andτInj = 0.2. The solid

ine inFig. 14shows the resulting chromatogram. In comp
son to the isocratic peak (dashed line inFig. 14) one observe

significant broadening of the solute peak due to the i
ction of the modifier and the solute peak, as predicte
quilibrium theory (c.f.Fig. 9).

In order to verify the predictions made for case (b
he operating conditions were chosen asc

Inj
M = 7 g/l, c0

M =
2 g/l and τInj = 0.12. The detailed simulation shown
ig. 15 confirms both the increase of the retention time
ell as the peak sharpening effect due to the sample–so

nteraction, as illustrated inFig. 10.

able 1
imulation parameters

ax [cm] 0.003
[cm/min] 1

* 0.65

B 0.4
∗ 0.538
rid points 5000

S(cM) 8.43× 1011 (cM [g/l])−12.52

M 3.18

M [l/g] 0.0363
[cm] 10
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Fig. 14. Dispersive model simulations, case (a); solid line: solute chro-
matogram; dashed line: isocratic solute peak.

Fig. 15. Dispersive model simulations, case (b1); solid line: solute chro-
matogram; dashed line: isocratic solute peak.

The next example is concerned with the occurrence of dou-
ble peaks and the effect of varying injection volumes. The
simulated chromatograms forcInj

M = 8.54g/l, c0
M = 10 g/l

and various injection times are shown inFig. 16 while the
last two columns inTable 2contain the retention times of the
peaks which were taken at the peak maximum.

It is seen inFig. 16, that the dispersive model predicts only
one peak in the chromatogram for small injection volumes
(τInj = 0.01). For increasing injection volumes, the effect of
the modifier perturbation in the dispersive model simulation
becomes more significant and a second peak occurs. While

Fig. 16. Dispersive model simulations, solute and modifier chromatograms;
thin solid lines:τInj = 0.01; dashed lines:τInj = 0.05; dotted lines:τInj = 0.1;
dash-dotted lines:τInj = 0.2; thick solid lines:τInj = 0.3.

the retention time of the first peak is constant with increas-
ing injection volumes, the elution time of the second peak
becomes larger. For the largest injection volume (τInj = 0.3),
the second solute peak containing the major portion of the
injected solute shows an anti-Langmurian shape as explained
in Section2.2, case (c), in the context ofFig. 13.

Indeed, the chosen operating parameters belong to case
(c) and, as already discussed there, double peaks and dis-
torted peaks are predicted by equilibrium theory. The results
of the equilibrium theory model are reported in the first four
columns ofTable 2which contain the retention times from
the equilibrium theory modelτZ, τX , τY (columns 1–3) as
described with reference toFigs. 12 and 13while the fourth
column indicates thex-position of point A (c.f.Fig. 10). It has
to be noted that rows with no entries in the fourth column of
Table 2indicate that point A is non-existent and therefore, the
modifier concentration in the injection,c

Inj
M , is present at the

column outlet and a chromatogram as inFig. 13is expected
while for τInj = 0.01, the point A is present inside the column
and two separate peaks as inFig. 12are predicted.

The problem, that the chromatogram from the disper-
sive model shows only one peak for the short injection time
τInj = 0.01, while two are foreseen by equilibrium theory, is
due to the fact that the modifier perturbation is very small
and flattens out due to the dispersion close to the inlet of
t rsive
m ne

Table 2
Comparison of retention times from equilibrium theory and dispersive model

Equilibrium theory results (c.f.Figs. 12 and 13)

τZ τX τY xA

τInj = 0.01 1.14 1.38 1.39 0.26
τInj = 0.05 1.14 2.00 2.01 –
τInj = 0.1 1.14 2.00 2.06 –
τInj = 0.2 1.14 2.00 2.16 –
τInj = 0.3 1.14 2.00 2.26 –
he column. The predicted retention time from the dispe
odel as reported inTable 2is indeed the same as the o

simulations

Retention timeτ (at peak maximum) dispersive model

1st peak 2nd peak

1.14 –
1.16 1.27
1.16 1.55
1.16 2.08
1.16 2.19
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Fig. 17. Dispersive model simulations, role of axial dispersion; solid
line: dax = 3× 10−2 cm; dashed line:dax = 3× 10−3 cm; dash-dotted line:
dax = 3× 10−4 cm.

of the isocratic peak calculated from equilibrium theory, i.e.
τ = 1.14.

For the larger injection times, i.e. aboveτInj = 0.01, it can
be seen fromTable 2that the retention times of the second
solute peak calculated using the dispersive model simulation
approach those from equilibrium theory, i.e. the rectangular
peak betweenτX andτY. This can be explained by the fact
that the impact of dispersion on the shape of the modifier peak
becomes smaller with increasing modifier peak size, i.e. with
increasing injection times.

Furthermore, we see fromTable 2 that the first solute
peak in the dispersive model chromatogram is approximately
eluted at the retention time of an isocratic peak,τ = 1.14,
which indicates that it propagated in the column as predicted
by equilibrium theory (c.f.Fig. 11, line 0–Z) and therefore,
is identical withτZ.

Let us now consider the impact of different axial disper-
sion coefficients for a given injection time. The results as
shown inFig. 17 were obtained through dispersive model
simulations usingτInj = 0.03,cInj

M = 8 g/l andc0
M = 11 g/l.

For these conditions the equilibrium theory predicts a very
sharp peak atτ = 1.67 while the isocratic equilibrium theory
peak is eluted atτ = 1.06. For large axial dispersion coeffi-
cients, the modifier peak is flattened out fast and therefore
its effect on the solute peak is lower. With decreasing axial
d k on
t difier
p aller
d ll
h eing
t ient
a ten-
t the
fi ents.
T aller
a es,
t rium
t

4. Interpretation of experimental data

The treatment of sample–solvent induced phenomena pre-
sented above can be used to analyze and explain some litera-
ture experimental results about retention time measurements
of the peptiden-formyl-Met-Phe in water-acetonitrile mix-
tures on a Novopak C18 column[13]. The modifier concentra-
tion in the eluent stream was varied between 10 and 60 vol.%
acetonitrile, andn-formyl-Met-Phe was injected using a sam-
ple solvent containing 20 vol.% acetonitrile. The squares in
Fig. 18 indicate the values of the Henry coefficients calcu-
lated from the measured retention times as a function of the
acetonitrile concentration using the standard relationship for
isocratic chromatography. The thick solid curve in the same
figure represents the fitting of the experimental data (see inset
in Fig. 18) which has been obtained using a typical exponen-
tial correlation for the Henry coefficient ofn-formyl-Met-Phe
as a function of the acetonitrile concentration (c.f. row 3 in
Table 3). In the original work it was observed that signifi-
cant deviations from the relation above are observed at the
higher acetonitrile concentration values. However, this dis-
crepancy is an artifact due to the sample–solvent induced
modifier–solute interaction discussed in this work and can
be interpreted correctly using the equilibrium theory results
reported above.

In Section2.2we have shown that the interaction between
t the
r
T
a rized
i
f ith
t difier
c

fier
c 4-

v
σ rfer-
e ected
f tra-
t ince
σ s
g e
i

T
S

c

ν

H
H
K
V
V

V

ispersion coefficients, the impact of the modifier pea
he solute peak becomes more pronounced since the mo
erturbation proceeds longer along the column for sm
ispersion coefficients. Hence, inFig. 17we observe a sma
ump which is eluted always at the same time, in fact b

he retention time belonging to the solute Henry coeffic
t the eluent modifier concentration (i.e. the isocratic re

ion time,τ = 1.06) and a larger peak which detaches from
rst hump sooner for decreasing axial dispersion coeffici
he retention time of the second peak increases with sm
xial dispersion. In the limit of an infinite number of stag

his approaches the retention time predicted by equilib
heory, i.e.τ = 1.67.
he modifier and the solute peak depends strongly on
elative magnitude ofσS(cInj

M ) with respect toσ0−A
M andσF−A

M .
hese three quantities can be computed using Eq.(16), (17)
nd (21)and the experimental parameter values summa

n Table 3. The obtained values are shown inFig. 19 as a
unction of the eluent modifier concentration together w
he slope of the solute characteristic at the eluent mo
oncentrationσS(c0

M).
From Fig. 19, it can be seen that if the eluent modi

oncentrationc0
M is between 20% and approximately 4

ol.% acetonitrile, we haveσS(cInj
M ) > σ0−A

M andσS(c0
M) >

F−A
M , and therefore case (b2) applies and a low inte
nce between the modifier and the solute peak is exp

rom equilibrium theory. Instead for modifier concen
ions above approximately 44-vol.%, case (b1) applies s

S(cInj
M ) > σ0−A

M andσS(c0
M) < σF−A

M and from the insight
ained in Section2.2, a strong distortion of the retention tim

s expected.

able 3
ystem parameters forn-formyl-Met-Phe from Kim et al.[13]

Inj
M [vol.%] 20
∗ 0.46

S(cM [vol.%]) 1
ν∗ (1090e−0.369cM + 41.1e−0.129cM )

M [(l/g)/(l/g)] 1.14

M [l/g] 0.15

Inj [�l] 20
˙ [ml/min] 1

column [ml] 1.792
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Fig. 18. Comparison of experimental data and correlation; thick solid line: exponential correlation for Henry coefficient; squares: Henry coefficients computed
from measured retention times assuming isocratic conditions; thin lines: Henry coefficients computed from retention times obtained from equilibrium theory
accounting for the sample–solvent induced modifier–solute interactions:τInj = 0.01 (solid),τInj = 0.003 (dashed),τInj = 0.0015 (dotted),τInj = 0.001 (dash-
dotted).

For both cases identified above, we can compute the reten-
tion time,τS, predicted by the equilibrium theory using the
corresponding equations from Section2.2, i.e. Eqs.(16) and
(17)and Eqs.(21)–(23).

Using these retention timesτS as experimental values,
we can compute the so-called “apparent” Henry coefficients,
HS, using the isocratic equationHS = (τS− 1)/ν∗. The result-

Fig. 19. Slopes of characteristics in the physical plane as function of ace-
tonitrile concentrationc0

M for n-formyl-Met-Phe; solid line: slope of solute
characteristics in state 0,σS(c0

M); dash-dotted line: slope of modifier charac-

teristic 0–A,σ0−A
M (cInj

M ); dashed line: slope of modifier characteristic F–A,

σF−A(c0 , c
Inj ); dotted line: slope of solute characteristic at state inj,σS(cInj ).

ing values of the “apparent” Henry coefficients are shown
in Fig. 18as a function of the eluent modifier concentration
for various dimensionless injection times,τInj . It is worth
noting that the injection volume used by Kim et al.[13] con-
verts into a dimensionless injection time ofτInj = 0.016. Note
that in calculating the retention times,τS, the value of the
Henry coefficient has been taken from the exponential func-
tion reported inTable 3, which corresponds to the thick curve
in Fig. 18.

From the results inFig. 18it is seen that for all modifier
concentrations up to approximately 44 vol.%, the calculated
retention timesτS lead to “apparent” Henry coefficientsHS
which are very close to the actual ones given by the exponen-
tial correlation. But for concentrations larger than 44 vol.%,
the “apparent” Henry coefficientsHS deviate significantly
from the real ones and approach those measured experimen-
tally. This clearly indicates that such a deviation is not due
to inaccuracies of the exponential correlation but it is due to
the influence of the sample–solvent interaction.

5. Guidelines to avoid retention time distortion

As stated in the introduction, sample–solvent induced
modifier–solute interactions can be avoided by simply using
a modifier concentration in the sample solvent equal to the
M M M M
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Fig. 20. Adsorptive properties of solute and modifier; solid line:HS(c0
M);

dashed line:HM/((1 + KMc0
M)(1 + KMc

Inj
M )) andHM/(1 + KMc

Inj
M )

2
.

one in the eluent. For the cases where this is not pos-
sible, we develop in the following general guidelines to
minimize such interactions. As seen previously, a help-
ful figure for the analysis of sample–solvent induced phe-
nomena is the plot of the slopes of the characteristics,
σF−A

M (c0
M, c

Inj
M ), σ0−A

M (cInj
M ), σS(cInj

M ) andσS(c0
M), as a func-

tion of the modifier concentrationc0
M. Since these slopes

are linear functions ofHM/((1 + KMc0
M)(1 + KMc

Inj
M )),

HM/(1 + KMc
Inj
M )

2
, HS(cInj

M ) and HS(c0
M), respectively, we

can plot these values instead as shown inFig. 20for the sys-
tem whose parameters are summarized inTable 1.

It has to be noted, that the functionsHM/((1 +
KMc0

M)(1 + KMc
Inj
M )) andHM/(1 + KMc

Inj
M )

2
yield nearly

the same values and hence they can not be distinguished in
Fig. 20.

We have seen that in order to avoid strong interactions
of the solute and the modifier peak, a large difference in the
slope of the characteristics of the solute in the sample–solvent
and the modifier peak is desired so as that the two sep-
arate as fast as possible and so their interaction vanishes
By considering the data inFig. 20, this leads to the conclu-
sion that the modifier concentration in the injection volume
should therefore be as far as possible from the intersection
and preferably on the left side of the latter, since the largest
difference can be obtained there. As a second point we should
c oner
o ntra-
t are
o ross
a hich
a ds to
t the
e f the
i

fect
o ction
c ould
b ide,

and the eluent and injection modifier concentrations should
be on the same side of the intersection.

6. Conclusions

The generic difference between system peaks and
sample–solvent induced phenomena has been discussed.
The latter occurs when the modifier concentration in the
sample–solvent is not the same as in the eluent, while the
former one occurs when the modifier adsorption is affected
by the presence of the solute. These interactions have been
analyzed in detail using an equilibrium theory model solved
by the method of characteristics, assuming a linear isotherm
for the solute and both a linear or a Langmuir isotherm for the
modifier. All possible operating conditions have been divided
into different cases and three main types of behavior have
been identified, including peak broadening, sharpening and
distortion as well as double peaks. The results of the equi-
librium theory model have been verified using a numerical
simulation based on an equilibrium-dispersive model. It has
been found, that in the case where the Henry constant of the
solute is estimated from experimental measurements of the
retention time obtained using a different modifier concen-
tration in the injection and in the eluent, severe errors can
b olute
i n the
r eri-
m d in
t ave
b been
p .
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onsider that the solute in the injection has to enter so
r later the region containing the eluent modifier conce

ion. If the injection and elution modifier concentration
n different sides of the intersection, the solute has to c
state where it travels as fast as the modifier peak w

lways causes severe retention time distortion. This lea
he conclusion that it is desirable that the injection and
luent modifier concentration are on the same side o

ntersection.
In summary, two general guidelines to minimize the ef

f sample–solvent induced modifier–solute peak intera
an be derived: the injection modifier concentration sh
e far away from the intersection, preferably on the left s
.

e made when the sample–solvent induced modifier–s
nteractions are not accounted for. In particular, based o
esults of the analysis using equilibrium theory, the exp
ental Henry constants of a peptide previously reporte

he literature as a function of the modifier concentration h
een interpreted and corrected. General guidelines have
rovided about how to avoid such dangerous situations

. Nomenclature

i liquid phase concentration of componenti
ax effective axial dispersion number
eff = daxu effective axial dispersion coefficient
i Henry coefficient of componenti
i selectivity of componenti

column length
i solid phase concentration of componenti

time
superficial velocity

= z/L dimensionless space coordinate
space coordinate

reek symbols
* = εB + (1− εB)εP total column porosity
B bed porosity
P particle porosity

fraction of solute as defined in Eq.(26)
∗ = (1− ε* )/ε* phase ratio
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σ i slope of characteristic in physical plane of compo-
nenti

τ = ut/(Lε* ) dimensionless time

Superscripts and subscripts
0 state 0
Inj state injection
M modifier
Out state at column outlet
S solute
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